Point Cloud Library (PCL) 1.14.0
Loading...
Searching...
No Matches
sac_model_cylinder.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2009-2010, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 *
39 */
40
41#ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
42#define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
43
44#include <pcl/sample_consensus/sac_model_cylinder.h>
45#include <pcl/common/common.h> // for getAngle3D
46#include <pcl/common/concatenate.h>
47
48//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
49template <typename PointT, typename PointNT> bool
51{
52 if (samples.size () != sample_size_)
53 {
54 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
55 return (false);
56 }
57
58 // Make sure that the two sample points are not identical
59 if (
60 std::abs ((*input_)[samples[0]].x - (*input_)[samples[1]].x) <= std::numeric_limits<float>::epsilon ()
61 &&
62 std::abs ((*input_)[samples[0]].y - (*input_)[samples[1]].y) <= std::numeric_limits<float>::epsilon ()
63 &&
64 std::abs ((*input_)[samples[0]].z - (*input_)[samples[1]].z) <= std::numeric_limits<float>::epsilon ())
65 {
66 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::isSampleGood] The two sample points are (almost) identical!\n");
67 return (false);
68 }
69
70 return (true);
71}
72
73//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
74template <typename PointT, typename PointNT> bool
76 const Indices &samples, Eigen::VectorXf &model_coefficients) const
77{
78 // Make sure that the samples are valid
79 if (!isSampleGood (samples))
80 {
81 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Invalid set of samples given!\n");
82 return (false);
83 }
84
85 if (!normals_)
86 {
87 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] No input dataset containing normals was given! Use setInputNormals\n");
88 return (false);
89 }
90
91 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
92 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
93
94 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
95 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
96 Eigen::Vector4f w = n1 + p1 - p2;
97
98 float a = n1.dot (n1);
99 float b = n1.dot (n2);
100 float c = n2.dot (n2);
101 float d = n1.dot (w);
102 float e = n2.dot (w);
103 float denominator = a*c - b*b;
104 float sc, tc;
105 // Compute the line parameters of the two closest points
106 if (denominator < 1e-8) // The lines are almost parallel
107 {
108 sc = 0.0f;
109 tc = (b > c ? d / b : e / c); // Use the largest denominator
110 }
111 else
112 {
113 sc = (b*e - c*d) / denominator;
114 tc = (a*e - b*d) / denominator;
115 }
116
117 // point_on_axis, axis_direction
118 Eigen::Vector4f line_pt = p1 + n1 + sc * n1;
119 Eigen::Vector4f line_dir = p2 + tc * n2 - line_pt;
120 line_dir.normalize ();
121
122 model_coefficients.resize (model_size_);
123 // model_coefficients.template head<3> () = line_pt.template head<3> ();
124 model_coefficients[0] = line_pt[0];
125 model_coefficients[1] = line_pt[1];
126 model_coefficients[2] = line_pt[2];
127 // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
128 model_coefficients[3] = line_dir[0];
129 model_coefficients[4] = line_dir[1];
130 model_coefficients[5] = line_dir[2];
131 // cylinder radius
132 model_coefficients[6] = static_cast<float> (sqrt (pcl::sqrPointToLineDistance (p1, line_pt, line_dir)));
133
134 if (model_coefficients[6] > radius_max_ || model_coefficients[6] < radius_min_)
135 return (false);
136
137 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
138 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
139 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
140 return (true);
141}
142
143//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
144template <typename PointT, typename PointNT> void
146 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
147{
148 // Check if the model is valid given the user constraints
149 if (!isModelValid (model_coefficients))
150 {
151 distances.clear ();
152 return;
153 }
154
155 distances.resize (indices_->size ());
156
157 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
158 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
159 float ptdotdir = line_pt.dot (line_dir);
160 float dirdotdir = 1.0f / line_dir.dot (line_dir);
161 // Iterate through the 3d points and calculate the distances from them to the sphere
162 for (std::size_t i = 0; i < indices_->size (); ++i)
163 {
164 // Approximate the distance from the point to the cylinder as the difference between
165 // dist(point,cylinder_axis) and cylinder radius
166 // @note need to revise this.
167 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
168
169 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
170
171 // Calculate the point's projection on the cylinder axis
172 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
173 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
174 Eigen::Vector4f dir = pt - pt_proj;
175 dir.normalize ();
176
177 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
178 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
179 double d_normal = std::abs (getAngle3D (n, dir));
180 d_normal = (std::min) (d_normal, M_PI - d_normal);
181
182 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
183 }
184}
185
186//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
187template <typename PointT, typename PointNT> void
189 const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
190{
191 // Check if the model is valid given the user constraints
192 if (!isModelValid (model_coefficients))
193 {
194 inliers.clear ();
195 return;
196 }
197
198 inliers.clear ();
199 error_sqr_dists_.clear ();
200 inliers.reserve (indices_->size ());
201 error_sqr_dists_.reserve (indices_->size ());
202
203 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
204 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
205 float ptdotdir = line_pt.dot (line_dir);
206 float dirdotdir = 1.0f / line_dir.dot (line_dir);
207 // Iterate through the 3d points and calculate the distances from them to the sphere
208 for (std::size_t i = 0; i < indices_->size (); ++i)
209 {
210 // Approximate the distance from the point to the cylinder as the difference between
211 // dist(point,cylinder_axis) and cylinder radius
212 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
213 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
214 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
215 continue;
216
217 // Calculate the point's projection on the cylinder axis
218 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
219 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
220 Eigen::Vector4f dir = pt - pt_proj;
221 dir.normalize ();
222
223 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
224 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
225 double d_normal = std::abs (getAngle3D (n, dir));
226 d_normal = (std::min) (d_normal, M_PI - d_normal);
227
228 double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
229 if (distance < threshold)
230 {
231 // Returns the indices of the points whose distances are smaller than the threshold
232 inliers.push_back ((*indices_)[i]);
233 error_sqr_dists_.push_back (distance);
234 }
235 }
236}
237
238//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
239template <typename PointT, typename PointNT> std::size_t
241 const Eigen::VectorXf &model_coefficients, const double threshold) const
242{
243 // Check if the model is valid given the user constraints
244 if (!isModelValid (model_coefficients))
245 return (0);
246
247 std::size_t nr_p = 0;
248
249 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
250 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
251 float ptdotdir = line_pt.dot (line_dir);
252 float dirdotdir = 1.0f / line_dir.dot (line_dir);
253 // Iterate through the 3d points and calculate the distances from them to the sphere
254 for (std::size_t i = 0; i < indices_->size (); ++i)
255 {
256 // Approximate the distance from the point to the cylinder as the difference between
257 // dist(point,cylinder_axis) and cylinder radius
258 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
259 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
260 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
261 continue;
262
263 // Calculate the point's projection on the cylinder axis
264 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
265 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
266 Eigen::Vector4f dir = pt - pt_proj;
267 dir.normalize ();
268
269 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
270 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
271 double d_normal = std::abs (getAngle3D (n, dir));
272 d_normal = (std::min) (d_normal, M_PI - d_normal);
273
274 if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
275 nr_p++;
276 }
277 return (nr_p);
278}
279
280//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
281template <typename PointT, typename PointNT> void
283 const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
284{
285 optimized_coefficients = model_coefficients;
286
287 // Needs a set of valid model coefficients
288 if (!isModelValid (model_coefficients))
289 {
290 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] Given model is invalid!\n");
291 return;
292 }
293
294 // Need more than the minimum sample size to make a difference
295 if (inliers.size () <= sample_size_)
296 {
297 PCL_ERROR ("[pcl::SampleConsensusModelCylinder:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
298 return;
299 }
300
301 Eigen::ArrayXf pts_x(inliers.size());
302 Eigen::ArrayXf pts_y(inliers.size());
303 Eigen::ArrayXf pts_z(inliers.size());
304 std::size_t pos = 0;
305 for(const auto& index : inliers) {
306 pts_x[pos] = (*input_)[index].x;
307 pts_y[pos] = (*input_)[index].y;
308 pts_z[pos] = (*input_)[index].z;
309 ++pos;
310 }
311 pcl::internal::optimizeModelCoefficientsCylinder(optimized_coefficients, pts_x, pts_y, pts_z);
312
313 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] Initial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
314 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
315 model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
316
317 Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
318 line_dir.normalize ();
319 optimized_coefficients[3] = line_dir[0];
320 optimized_coefficients[4] = line_dir[1];
321 optimized_coefficients[5] = line_dir[2];
322}
323
324//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
325template <typename PointT, typename PointNT> void
327 const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
328{
329 // Needs a valid set of model coefficients
330 if (!isModelValid (model_coefficients))
331 {
332 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::projectPoints] Given model is invalid!\n");
333 return;
334 }
335
336 projected_points.header = input_->header;
337 projected_points.is_dense = input_->is_dense;
338
339 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
340 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
341 float ptdotdir = line_pt.dot (line_dir);
342 float dirdotdir = 1.0f / line_dir.dot (line_dir);
343
344 // Copy all the data fields from the input cloud to the projected one?
345 if (copy_data_fields)
346 {
347 // Allocate enough space and copy the basics
348 projected_points.resize (input_->size ());
349 projected_points.width = input_->width;
350 projected_points.height = input_->height;
351
352 using FieldList = typename pcl::traits::fieldList<PointT>::type;
353 // Iterate over each point
354 for (std::size_t i = 0; i < projected_points.size (); ++i)
355 // Iterate over each dimension
356 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
357
358 // Iterate through the 3d points and calculate the distances from them to the cylinder
359 for (const auto &inlier : inliers)
360 {
361 Eigen::Vector4f p ((*input_)[inlier].x,
362 (*input_)[inlier].y,
363 (*input_)[inlier].z,
364 1);
365
366 float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
367
368 pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
369 pp.matrix () = line_pt + k * line_dir;
370
371 Eigen::Vector4f dir = p - pp;
372 dir[3] = 0.0f;
373 dir.normalize ();
374
375 // Calculate the projection of the point onto the cylinder
376 pp += dir * model_coefficients[6];
377 }
378 }
379 else
380 {
381 // Allocate enough space and copy the basics
382 projected_points.resize (inliers.size ());
383 projected_points.width = inliers.size ();
384 projected_points.height = 1;
385
386 using FieldList = typename pcl::traits::fieldList<PointT>::type;
387 // Iterate over each point
388 for (std::size_t i = 0; i < inliers.size (); ++i)
389 // Iterate over each dimension
390 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
391
392 // Iterate through the 3d points and calculate the distances from them to the cylinder
393 for (std::size_t i = 0; i < inliers.size (); ++i)
394 {
395 pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
396 pcl::Vector4fMapConst p = (*input_)[inliers[i]].getVector4fMap ();
397
398 float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
399 // Calculate the projection of the point on the line
400 pp.matrix () = line_pt + k * line_dir;
401
402 Eigen::Vector4f dir = p - pp;
403 dir[3] = 0.0f;
404 dir.normalize ();
405
406 // Calculate the projection of the point onto the cylinder
407 pp += dir * model_coefficients[6];
408 }
409 }
410}
411
412//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
413template <typename PointT, typename PointNT> bool
415 const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
416{
417 // Needs a valid model coefficients
418 if (!isModelValid (model_coefficients))
419 {
420 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::doSamplesVerifyModel] Given model is invalid!\n");
421 return (false);
422 }
423
424 for (const auto &index : indices)
425 {
426 // Approximate the distance from the point to the cylinder as the difference between
427 // dist(point,cylinder_axis) and cylinder radius
428 // @note need to revise this.
429 Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
430 if (std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]) > threshold)
431 return (false);
432 }
433
434 return (true);
435}
436
437//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
438template <typename PointT, typename PointNT> double
440 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
441{
442 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
443 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
444 return sqrt(pcl::sqrPointToLineDistance (pt, line_pt, line_dir));
445}
446
447//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
448template <typename PointT, typename PointNT> void
450 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
451{
452 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
453 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
454
455 float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) / line_dir.dot (line_dir);
456 pt_proj = line_pt + k * line_dir;
457
458 Eigen::Vector4f dir = pt - pt_proj;
459 dir.normalize ();
460
461 // Calculate the projection of the point onto the cylinder
462 pt_proj += dir * model_coefficients[6];
463}
464
465//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
466template <typename PointT, typename PointNT> bool
467pcl::SampleConsensusModelCylinder<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
468{
469 if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
470 return (false);
471
472 // Check against template, if given
473 if (eps_angle_ > 0.0)
474 {
475 // Obtain the cylinder direction
476 const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
477
478 double angle_diff = std::abs (getAngle3D (axis_, coeff));
479 angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
480 // Check whether the current cylinder model satisfies our angle threshold criterion with respect to the given axis
481 if (angle_diff > eps_angle_)
482 {
483 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Angle between cylinder direction and given axis is too large.\n");
484 return (false);
485 }
486 }
487
488 if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[6] < radius_min_)
489 {
490 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too small: should be larger than %g, but is %g.\n",
491 radius_min_, model_coefficients[6]);
492 return (false);
493 }
494 if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[6] > radius_max_)
495 {
496 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too big: should be smaller than %g, but is %g.\n",
497 radius_max_, model_coefficients[6]);
498 return (false);
499 }
500
501 return (true);
502}
503
504#define PCL_INSTANTIATE_SampleConsensusModelCylinder(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCylinder<PointT, PointNT>;
505
506#endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
507
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cylinder model.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cylinder model.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cylinder coefficients using the given inlier set and return them to the user.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
void projectPointToCylinder(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
Project a point onto a cylinder given by its model coefficients (point_on_axis, axis_direction,...
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cylinder model coefficients.
double pointToLineDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cylinder model, compute the model coefficients...
SampleConsensusModel represents the base model class.
Definition sac_model.h:71
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
int optimizeModelCoefficientsCylinder(Eigen::VectorXf &coeff, const Eigen::ArrayXf &pts_x, const Eigen::ArrayXf &pts_y, const Eigen::ArrayXf &pts_z)
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
#define M_PI
Definition pcl_macros.h:201